
Lab 4 - CPU Monitoring (Linux)

Objectives

 Offer an introduction to Performance Monitoring

 Present the main CPU metrics and how to interpret them

 Get you to use various tools for monitoring the performance of the CPU

 Familiarize you with the x86 Hardware Performance Counters

Contents

Tasks
 01. [20p] Vmstat

 02. [20p] Mpstat

 03. [20p] Zip with compression levels

 04. [40p] Hardware counters

 05. [10p] Feedback

Introduction

01. Performance Monitoring

Performance monitoring is the process of regularly checking a set of metrics and tracking the

overall health of a specific system. Monitoring is tightly coupled with performance tuning, and a

Linux system administrator should be proficient in these two subjects, as one of their main

responsibilities is to identify bottlenecks and find solutions to help the operating system surpass

them. Pinpointing a Linux system bottleneck requires a deep understanding of how various

components of this operating system work (e.g. how processes are scheduled on the CPU, how

memory is managed , the way that I/O interrupts are handled, the details of network layer

implementation, etc). From a high level, the main subsystems that you should think of when tuning

are CPU, Memory, I/O and Network.

These four subsystems are vastly depending on each other and tuning the whole system implies

keeping them in harmony. To quote a famous idiom, “a chain is no stronger than its weakest link”.

Thus, when investigating a system performance issue, all the subsystems must be checked and

analysed.

Being able to discover the bottleneck in a system requires also understanding of what types of

processes are running on it. The application stack of a system can be broken down in two

categories:

 CPU Bound - performance is limited by the CPU

 Requires heavy use of the CPU (e.g. for batch processing, mathematical operations,

etc)

 e.g. High volume web servers

 I/O Bound - performance is limited by the I/O subsystem

 Requires heavy use of memory and storage system

 An I/O Bound application is usually processing large amounts of data

 An often behaviour is to use CPU resources for making I/O requests and to enter a

sleeping state

 e.g. Database applications

Before going further with the CPU specific metrics and tools, here is a methodical approach which

can guide you when tuning the performance of a system:

 Understand the factors which affect the performance

https://ocw.cs.pub.ro/courses/ep/labs/01/contents/tasks/ex1
https://ocw.cs.pub.ro/courses/ep/labs/01/contents/tasks/ex2
https://ocw.cs.pub.ro/courses/ep/labs/01/contents/tasks/ex3
https://ocw.cs.pub.ro/courses/ep/labs/01/contents/tasks/ex4
https://ocw.cs.pub.ro/courses/ep/labs/01/contents/tasks/ex5

 Create a baseline measurement with the normal performance of the system

 Reproduce the issue and compare the measurements with the baseline to narrow down the

bottleneck to a specific subsystem

 Try a single change at a time and test the results

02. Introducing the CPU and CPU Metrics

Before looking at the numerous performance measurement tools present in the Linux operating

system, it is important to understand some key concepts and metrics, along with their interpretation

regarding the performance of the system.

The kernel contains a scheduler which is in charge of scheduling two types of resources: interrupts

and threads. The resources are assigned by the scheduler with different priorities. The following

list presents the priorities:

 User Processes - All the processes running in the user space - having the lowest priority in

the scheduling mechanism

 System Processes - All kernel processing

 Interrupts - Devices announcing the kernel that they are done processing

Context Switches

While executing a process, the necessary set of data is stored in registers on the processor and

cache. This group of information is called a context. Each thread owns an allotted time quantum

to spend on the CPU, and when the time finishes or it is preempted by a higher priority task, a new

ready to run process will be scheduled. When the next process is scheduled to run, the context of

the current will be stored and the context of the new one is restored to the registers, this process

being named context switch. Having a great volume of context switching is not desired because

the CPU has to flush its register and cache each time, to gain room for the new process, which

leads to performance issues.

The Run Queue

Each CPU preserves its own run queue of threads. In an ideal scenario, the scheduler would be

constantly executing threads. Threads can be in different states: runnable - processes which are

ready to be executed or in a sleep state - being blocked while waiting for I/O. If the system has

performance issues or it’s overloaded, then the queue starts to fill up and a process thread will take

longer to execute.

The same concept is known also as “load”. This term is measured by load average, which is a

rolling average of the sum of the processes waiting to be processed and the processes waiting for

uninterruptible task to be completed. Unix systems traditionally present the CPU load as 1-minute,

5-minute and 15-minute averages.

CPU Utilisation

The CPU Utilisation is a meaningful metric to observe how the running processes make use of the

given processing resources. You can find the following categories the vast majority of performance

monitoring tools:

 User time - the time percentage a CPU spends on user processes

 High user time values are recommended because this usually means that the system

carries out actual work

 System time - the time percentage a CPU spends on kernel threads and interrupts

 High system time values could mean bottlenecks in the network and driver stack

 Waiting I/O - the time percentage a CPU waits for a I/O event to occur

 A system should not spend too much time waiting for I/O operations

 Idle time - the time percentage a CPU spends waiting for tasks

 Nice time - the time percentage spends on changing the priority and execution order of

processes. It is often included in the user time

03. CPU Performance Monitoring

The Linux distributions have various monitoring tools available. Some of the utilities deal with

metrics in a single tool, providing well formatted output which eases the understanding of the

system performance. Other tools are specialized on more specific metrics and give us detailed

information.

Some of the most important Linux CPU performance monitoring tools:

Tool Most useful function

vmstat System activity

top Process activity

uptime, w Average system load

ps, pstree Displays the processes

iostat Average CPU load

sar Collect and report system activity

mpstat Multiprocessor usage

04. Examples

Understanding how well a CPU is performing is a matter of interpreting the run queue, its

utilisation, and the amount of context switching performed. Although performance is relative to

baseline statistics, in the absence of these statistics, the following general performance

expectations of a system can be used as a guideline:

 Run Queues – A run queue should not have more than 3 threads queued per processor. For

example, a dual processor system should not have more than 6 threads in the run queue.

 CPU Utilisation – A fully utilised CPU should have the following utilisation distribution:

 65% – 70% User Time

 30% – 35% System Time

 0% – 5% Idle Time

 Context Switches – The amount of context switches is directly relevant to CPU utilisation.

As long as the CPU sustains the previously presented utilisation distribution, it is acceptable to

have a high amount of context switches.

The following two examples give interpretations of the outputs generated by vmstat.

Example A - Sustained CPU Utilisation

The following observations can be made based on this output:

 There are a high amount of interrupts (in) and a low amount of context switches (cs). It

appears that a single process is making requests to hardware devices.

 To further prove the presence of a single application, the user (us) time is constantly at

85% and above. Along with the low amount of context switches, we deduce that the process comes

on the processor and stays on the processor.

 The run queue is just about at the limits of acceptable performance. On a couple occasions,

it goes beyond acceptable limits.

Example B - Overloaded Scheduler

The following observations can be made based on this output:

 The amount of context switches is higher than interrupts, suggesting that the kernel has to

spend a considerable amount of time context switching threads.

 The high volume of context switches is causing an unhealthy balance of CPU utilisation.

This is evident by the fact that the wait on IO percentage is extremely high and the user percentage

is extremely low.

 Because the CPU is blocked waiting for I/O, the run queue starts to fill and the amount of

threads blocked waiting on I/O also fills.

These examples are from Darren Hoch’s Linux System and Performance Monitoring.

Tasks

01. [20p] Vmstat

The vmstat utility provides a good low-overhead view of system performance. Since vmstat is

such a low-overhead tool, it is practical to have it running even on heavily loaded servers when it

is needed to monitor the system’s health.

[10p] Task A - Monitoring stress

http://ufsdump.org/papers/oscon2009-linux-monitoring.pdf
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep1_poz1.png?id=ep:labs:01
https://ocw.cs.pub.ro/courses/_detail/ep/laboratoare/ep1_poz2.png?id=ep:labs:01

Run vmstat on your machine with a 1 second delay between updates. Notice the CPU utilisation

(info about the output columns here).

In another terminal, use the stress command to start N CPU workers, where N is the number of

cores on your system. Do not pass the number directly. In stead, use command substitution.

[10p] Task B - How does it work?

Let us look at how vmstat works under the hood. We can assume that all these statistics (memory,

swap, etc.) can not be normally gathered in userspace. So how does vmstat get these values from

the kernel? Or rather, how does any process interact with the kernel? Most obvious answer: system

calls.

$ strace vmstat

“All well and good. But what am I looking at?”

What you should be looking at are the system calls after the two writes that display the output

header (hint: it has to do with /proc/ file system). So, what are these files that vmstat opens?

$ file /proc/meminfo

$ cat /proc/meminfo

$ man 5 proc

The manual should contain enough information about what these kernel interfaces can provide.

However, if you are interested in how the kernel generates the statistics in /proc/meminfo (for

example), a good place to start would be meminfo.c (but first, SO2 wiki).

02. [20p] Mpstat

Open fact_rcrs.zip and look at the code.

[10p] Task A - Python recursion depth

Try to run the script while passing 1000 as a command line argument. Why does it crash?

Luckily, python allows you to both retrieve the current recursion limit and set a new value for it.

Increase the recursion limit so that the process will never crash, regardless of input (assume that it

still has a reasonable upper bound).

[10p] Task B - CPU affinity

Run the script again, this time passing 10000. Use mpstat to monitor the load on

each individual CPU at 1s intervals. The one with close to 100% load will be the one running our

script. Note that the process might be passed around from one core to another.

Stop the process. Use stress to create N-1 CPU workers, where N is the number of cores on your

system. Use taskset to set the CPU affinity of the N-1 workers and then run the script again. You

should notice that the process is scheduled on cpu0.

Note: to get the best performance when running a process, make sure that it stays on the same core

for as long as possible. Don't let the scheduler decide this for you, if you can help it. Allowing it

to bounce your process between cores can drastically impact the efficient use of the cache and the

TLB. This holds especially true when you are working with servers rather than your personal PCs.

While the problem may not manifest on a system with only 4 cores, you can't guarantee that it also

won't manifest on one with 40 cores. When running several experiments in parallel, aim for

something like this:

Click to display ⇲

03. [20p] Zip with compression levels

https://medium.com/@damianmyerscough/vmstat-explained-83b3e87493b3
https://elixir.bootlin.com/linux/v4.15/source/fs/proc/meminfo.c
https://ocw.cs.pub.ro/courses/so2
https://ocw.cs.pub.ro/courses/_media/ep/labs/fact_rcrs.zip

The zip command is used for compression and file packaging under Linux/Unix operating system.

It provides 10 levels of compression, where:

 level 0 : provides no compression, only packaging

 level 6 : used as default compression level

 level 9 : provides maximum compression

$ zip -5 file.zip file.txt

[10p] Task A - Measurements

Write a script to measure the compression rate and the time required for each level. Use the

following files:

 two largest bitmaps from here

 this large text file here

[10p] Task B - Plot

Fill the data you obtained into the python3 script in plot.zip.

Make sure you have python3 and python3-matplotlib installed.

04. [40p] Hardware counters

A significant portion of the system statistics that can be generated involve hardware counters. As

the name implies, these are special registers that count the number of occurrences of specific events

in the CPU. These counters are implemented through Model Specific Registers (MSR), control

registers used by developers for debugging, tracing, monitoring, etc. Since these registers may be

subject to changes from one iteration of a microarchitecture to the next, we will need to consult

chapters 18 and 19 from Intel 64 and IA-32 Architectures Developer's Manual: Vol. 3B.

The instructions that are used to interact with these counters are RDMSR, WRMSR and RDPMC.

Normally, these are considered privileged instruction (that can be executed only in ring0, aka.

kernel space). As a result, acquiring these information from ring3 (user space) requires a context

switch into ring0, which we all know to be a costly operation. The objective of this exercise is to

prove that this is not necessarily the case and that it is possible to configure and examine these

counters from ring3 in as few as a couple of clock cycles.

Before getting started, one thing to note is that there are two types of performance counters:

1. Fixed Function Counters

 each can monitor a single, distinct and predetermined event (burned in hardware)

 are configured a bit differently than the other type

 are not of interest to us in this laboratory

2. General Purpose Counters

 can be configured to monitor a specific event from a list of over 200 (see chapters

19.1 and 19.2)

Download hw_counter.zip.

Here is an overview of the following five tasks:

 Task A: check the version ID of your CPU to determine what it's capable of monitoring.

 Task B: set a certain bit in CR4 to enable ring3 usage of the RDPMC instruction.

 Task C: use some ring3 tools to enable the hardware counters.

 Task D: start counting L2 cache misses.

 Task E: use RDPMC to measure the cache misses for a familiar program.

[5p] Task A - Hardware Info

First of all, we need to know what we are working with. Namely, the microarchitecture version

ID and the number of counters per core. To this end, we will use cpuid (basically a wrapper over

https://www.fileformat.info/format/bmp/sample/index.htm
https://norvig.com/big.txt
https://ocw.cs.pub.ro/courses/_media/ep/labs/plot.zip
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.felixcloutier.com/x86/rdmsr
https://www.felixcloutier.com/x86/wrmsr
https://www.felixcloutier.com/x86/rdpmc
https://ocw.cs.pub.ro/courses/_media/ep/labs/01/contents/tasks/hw_counter.zip
https://linux.die.net/man/1/cpuid

the CPUID instruction.) All the information that we need will be contained in the 0AH leaf (might

want to get the raw output of cpuid):

 CPUID.0AH:EAX[15:8] : number of general purpose counters

 CPUID.0AH:EAX[7:0] : version ID

 CPUID.0AH:EDX[7:0] : number of fixed function counters

Point out to your assistant which is which in the cpuid output.

[5p] Task B - Unlock RDPMC in ring3

This is pretty straightforward. All you need to do is set the Performance-Monitor Counter

Enable bit in CR4. Naturally, this can't be done from ring3. As such, we provide a kernel module

that does it for you (see hack_cr4.c.) When the module is loaded, it will set the aforementioned

bit. Similarly, when the module is unloaded, it will revert the change. Try compiling the module,

loading and unloading it and finally, check the kernel message log to verify that it works.

$ make

$ sudo insmod hack_cr4.ko

$ sudo rmmod hack_cr4

$ dmesg

[10p] Task C - Configure IA32_PERF_GLOBAL_CTRL

The IA32_PERF_GLOBAL_CTRL (0x38f) MSR is an addition from version 2 that allows

enabling / disabling multiple counters with a single WRMSR instruction. What happens, in layman

terms, is that the CPU performs an AND between each EANBLE bit in this register and its

counterpart in the counter's original configuration register from version 1 (which we will deal with

in the next task.) If the result is 1, the counter begins to register the programmed event every clock

cycle. Normally, all these bits should be set by default during the booting process but it never hurts

to check. Also, note that this register exists for each logical core.

If for CR4 we had to write a kernel module, for MSRs we have user space tools that take care of

this for us (rdmsr and wrmsr) by interacting with a driver called msr (install msr-tools if it's

missing from your system.) But first, we must load this driver.

$ lsmod | grep msr

$ sudo modprobe msr

$ lsmod | grep msr

 msr 16384 0

https://www.felixcloutier.com/x86/cpuid
https://en.wikipedia.org/wiki/Control_register#CR4
http://manpages.ubuntu.com/manpages/trusty/man1/rdmsr.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/wrmsr.1.html
https://ocw.cs.pub.ro/courses/_detail/ep/labs/ia32_perf_global_ctrl.png?id=ep:labs:01

Next, let us read the value in the IA32_PERF_GLOBAL_CTRL register. If the result differs from

what you see in the snippet below, overwrite the value (the -a flag specifies that we want the

command to run on each individual logical core).

$ sudo rdmsr -a 0x38f

 70000000f

$ sudo wrmsr -a 0x38f 0x70000000f

[10p] Task D - Configure IA32_PERFEVENTSELx

The IA32_PERFEVENTSELx are MSRs from version 1 that are used to configure the monitored

event of a certain counter, its enabled state and a few other things. We will not go into detail and

instead only mention the fields that interest us right now (you can read about the rest in the Intel

manual.) Note that the x in the MSR's name stands for the counter number. If we have 4 counters,

it takes values in the 0:3 range. The one that we will configure is IA32_PERFEVENTSEL0

(0x186). If you want to configure more than one counter, note that they have consecutive register

number (i.e. 0x187, 0x188, etc.).

As for the register flags, those that are not mentioned in the following list should be left cleared:

 EN (enable flag) = 1 starts the counter

 USR (user mode flag) = 1 monitors only ring3 events.2)

 UMASK (unit mask) = ?? depends on the monitored event (see chapter 19.2)

 EVSEL (event select) = ?? depends on the monitored event (see chapter 19.2)

Before actually writing in this register, we should verify that no one is currently using it. If this is

indeed the case, we might also want to clear IA32_PMC0 (0xc1). PMC0 is the actual counter that

is associated to PERFEVENTSEL0.

$ sudo rdmsr -a 0x186

 0

$ sudo wrmsr -a 0xc1 0x00

$ sudo wrmsr -a 0x186 0x41????

For the next (and final task) we are going to monitor the number of L2 cache misses. Look for

the L2_RQSTS.MISS event in table 19-3 or 19-11 (depending on CPU version id) in the Intel

manual and set the last two bytes (the unit mask and event select) accordingly. If the operation is

successful and the counters have started, you should start seeing non-zero values in the PMC0

register, increasing in subsequent reads.

[10p] Task E - Ring3 cache performance evaluation

https://ocw.cs.pub.ro/courses/_detail/ep/labs/ia32_perfeventselx.png?id=ep:labs:01

As of now, we should be able to modify the CR4 register with the kernel module, enable all

counters in the IA32_PERF_GLOBAL_CTRL across all cores and start an L2 cache

miss counter again, across all cores. What remains is putting everything into practice.

Take mat_mul.c. This program may be familiar from an ASC laboratory but, in case it isn't, the

gist of it is that when using the naive matrix multiplication algorithm (O(n^3)), the frequency with

which each iterator varies can wildly affect the performance of the program. The reason behind

this is (in)efficient use of the CPU cache. Take a look at the following snippet from the source and

keep in mind that each matrix buffer is a continuous area in memory.

for (uint32_t i=0; i<N; ++i) /* line */

 for (uint32_t j=0; j<N; ++j) /* column */

 for (uint32_t k=0; k<N; ++k)

 r[i*N + j] += m1[i*N + k] * m2[k*N + j];

What is the problem here? The problem is that i and k are multiplied with a large number N when

updating a certain element. Thus, fast variations in these two indices will cause huge strides in

accessed memory areas (larger than a cache line) and will cause unnecessary cache misses. So

what are the best and worst configurations for the three fors? The best: i, k j. The worst: j, k, i. As

we can see, the configurations that we will monitor in mat_mul.c do not coincide with the

aforementioned two (so… not great, not terrible.) Even so, the difference in execution time and

number of cache misses will still be significant.

Which brings us to the task at hand: using the RDPMC instruction, calculate the number of L2

cache misses for each of the two multiplications without performing any context switches (hint:

look at gcc extended asm and the following macro from mat_mul.c).

#define rdpmc(ecx, eax, edx) \

 asm volatile (\

 "rdpmc" \

 : "=a"(eax), \

 "=d"(edx) \

 : "c"(ecx))

A word of caution: remember that each logical core has its own PMC0 counter, so make sure to

use taskset in order to set the CPU affinity of the process. If you don't the process may be passed

around different cores and the counter value becomes unreliable.

$ taskset 0x01 ./mat_mul 1024

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://linux.die.net/man/1/taskset

	Lab 4 - CPU Monitoring (Linux)
	Objectives
	Contents
	Introduction
	01. Performance Monitoring
	02. Introducing the CPU and CPU Metrics
	Context Switches
	The Run Queue
	CPU Utilisation

	03. CPU Performance Monitoring
	04. Examples
	Example A - Sustained CPU Utilisation
	Example B - Overloaded Scheduler

	Tasks
	01. [20p] Vmstat
	[10p] Task A - Monitoring stress
	[10p] Task B - How does it work?

	02. [20p] Mpstat
	[10p] Task A - Python recursion depth
	[10p] Task B - CPU affinity

	03. [20p] Zip with compression levels
	[10p] Task A - Measurements
	[10p] Task B - Plot

	04. [40p] Hardware counters
	[5p] Task A - Hardware Info
	[5p] Task B - Unlock RDPMC in ring3
	[10p] Task C - Configure IA32_PERF_GLOBAL_CTRL
	[10p] Task D - Configure IA32_PERFEVENTSELx
	[10p] Task E - Ring3 cache performance evaluation

